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CZ-772 07 Olomouc, Czech Republic
2 Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Štefánikova 47,
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Abstract
This paper deals with the standard and entropic uncertainty relations for the
finite-potential well with different length and potential depth. We calculate
the position and momentum dispersions and entropies that are dependent on
the quantum states of the finite well and determine the corresponding standard
and entropic uncertainty relations. Then we calculate the entropy of occurrence
for the mass point inside and outside the well. We discuss the results and
determine a class of probability distributions with a parameter for which the
standard deviation becomes infinite, independent of the value of this parameter.

PACS numbers: 03.65.Ta, 42.50.−p

1. Introduction

Recently, with the advent of ultraprecise measurement techniques being developed in
experimental atomic physics [1] and quantum optics [2], renewed interest has arisen concerning
the ultimate limitations of measurement imposed by quantum mechanics. An interesting
problem is the limits placed on the joint measurability of non-commuting variables. In optics
these might be, for example, the optical phase and the photon number, in atomic physics
they might be the momentum and position of the free and bound particle. The fact that
two non-commuting observables A and B cannot simultaneously obtain sharp eigenvalues
represents the cornerstone of the principle of uncertainty in quantum mechanics and can
be quantitatively expressed in different forms, commonly called uncertainty relations. An
uncertainty relation, as normally understood, provides an estimate of the minimum uncertainty
expected in the outcome of a measurement of one observable, given the uncertainty in outcome
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of a measurement of another observable4. The limits of the measurability placed on the position
and momentum of a particle depend on the concrete quantum system and are given by the
standard and entropic uncertainty relations. Therefore, it is necessary to investigate these
limits especially for the given quantum system and its quantum states.

This paper is devoted to the determination of position and momentum measurability limits
of a finite-potential well both in the form of the momentum and position dispersions (standard
deviations) and the Shannon entropies by means of which we construct the corresponding
standard and entropic uncertainty relations. There are many authors (see e.g. [7, 11]) who
generally demonstrated that the entropic uncertainty relation corresponds more to the
uncertainty principle of quantum physics than to the Heisenberg one. We discuss this problem
on the example of the finite well and show how the lower bounds of the product of position and
momentum uncertainties as well as the sum of these uncertainties depend on its parameters
and its quantum states.

The harmonic oscillator and potential well are perhaps the simplest systems that
have been extensively studied both classically and quantum mechanically. The harmonic
oscillator represents the main paradigm in quantum optics and the potential well serves as an
important model in particle and condensed matter physics. In the latter, the overlapping of
electron wavefunctions determines the probability of the tunnelling through barriers between
neighbouringpotential wells. These overlappingsare mainly given by the spreading (measured
by dispersions or entropies) of the electron wavefunctions in the array of the neighbouring
wells. The dispersions and entropies of the position and momentum of the two-dimensional
wells in periodic arrays of the two-dimensional quantum wells in a semiconductor film give
important information about its transport properties [14].

While the position and momentum measurability limits of the harmonic oscillator and the
hydrogen atom, in the form of their entropies and dispersions, have already been determined
as a function of their quantum states (see [5, 8, 10] and references therein) the corresponding
limits are only known for the infinite-potential well which represents the limiting case of the
finite-potential well [6, 17]. In this paper we also determine these quantities for the shallow
and the deep finite-potential well.

We recall that the entropic uncertainty relation for the position and momentum of a
quantum system described by its normalized function ψ(x) has the form [7]

Sx + Sp � Sxp (1)

where Sx and Sp are the entropies of its position and momentum

Sx = −
∫ ∞

−∞
|ψ(x)|2 log |ψ(x)|2 dq (2)

and

Sp = −
∫ ∞

−∞
|ϕ̂(p)|2 log |ϕ̂(p)|2 dp (3)

respectively, where ϕ̂(p) is the Fourier transfer of the wavefunction ψ(x). Bialynicki-Birula
and Mycielski and others [7] found that the lower non-trivial bound for the sum of position

4 There is still active discussion on the joint measurement of two canonically conjugate observables and the physical
interpretation of the uncertainty principle in quantum physics. Some authors believe these observables cannot be
simultaneously measured at all, others believe that they can be measured simultaneously with unlimited accuracy,
the standard view being that the measurement is possible but that the uncertainty relation limits its accuracy [15].
Another formulation of the uncertainty relation, based on the operational probability distributions of non-commuting
observables, that explicitly takes into account the action of the measurement device, when determining their limits
of measurability, have proposed Bužek et al [16]. The uncertainty relations, considered here, reflect the intrinsic
properties of the quantum mechanical states, not taking into account the action of the measurement device.
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and momentum entropies holds (h̄ = 1)

Sx + Sp � 1 + lnπ. (4)

2. The finite-potential well

The finite-potential well is a quantum system with the potential [12]

U(x) =
{−U |x| � a

0 |x| > a.

For the sake of simplicity,next we only consider the symmetrical solutions of the corresponding
Schrödinger equation (putting 2m/h̄2 = 1)

�(x) ≡


ψI (x) = A exp(κx) for x < −a left-hand side of the well (area I)
ψIII(x) = A exp(−κx) for x > +a right-hand side of the well (area III)
ψII(x) = B cos(kx) for |x| < a in the well (area II)

(5)
where k = √

U − E, κ = √
(−E), κ and k are connected by the transcendent equation

κa = (ka) tan(ka) (6a)

and the constants A and B are completely determined by the values of κ and k

A = B
κ√

k2 + κ2
exp(κa) B =

( κ

1 + κa

)1/2
. (6b)

In the following we calculate the position and momentum dispersions and entropies of
the one-dimensional finite-potential well. The position probability density is q(x) = |�(x)|2
and the corresponding position dispersion and entropy are

(�x)2 =
∫ ∞

−∞
q(x)x2 dx

and

Sx = −
∫ ∞

−∞
q(x) log q(x) dx.

Analytical evaluation of these integrals yields

(�x)2 = 1

2(k2 + κ2)(1 + κa)
(2a2κ2 + 2aκ + 1)

+

(
κ

(1 + aκ)12k3

)
[4a3k3 + 6a2k2 sin(2ak) + 6ak cos(2ak)− 3 sin(2ak)]

and

Sx =
(

κ2

(1 + aκ)(k2 + κ2)

) [
(2aκ + 1)− log

(
κ3

(1 + κa)(k2 + κ2)

)]
− I1

where

I1 =
∫ +a

−a

( κ

1 + ka

)
cos2 kx log

( κ

1 + κa

)
cos2 kx dx

=
[( κ

1 + κa

)(
1

2
x +

1

4k
sin 2kx

)
log

( κ

1 + κa

)
cos2 kx

]+a

−a

+
κ

(1 + κa)k

[
a

2
− 1

4k
sin 2ka

]a
−a

+
( κ

1 + κa

)
[It (ka)− It (−ka)]



5754 V Majernı́k and E Majernı́ková

where

It (kx) = ix2

2
− x log[1 − exp(2ikx)]

k
+

Li2(z)[2,− exp(2ikx)]

2k2

and

Li2(z) =
∞∑
l=1

zl

l2
.

The corresponding momentum wavefunction is given by the Fourier transform of the
wavefunction (5)

ψ̂(p) = 1√
2πh̄

∫ ∞

−∞
�(x) exp

(
− ipx

h̄

)
dx

= B√
2π

[
sin(ak − ap)

k − p
+

sin(ak + ap)

k + p

]
+ 2R(p) [κ cos(ap)− p sin(ap)] (7)

where

R(p) = A exp(−κa)√
2π(κ2 + p2)

.

Evaluation of the integral determining the momentum dispersion of the system under study
yields

(�p)2 = h̄2

2

( κ

1 + ka

)(
2ak2 + k sin 2ak − κ3

k2 + κ2

)
.

Inserting�x and �p into the Heisenberg uncertainty relation we obtain

�x�p = h̄

2
Fh(a, κ, k)

where Fh(a, κ, k) represents a complicated function, of width a and depth U, of the potential
well. Since the lower bound of the uncertainty product is h̄/2 [12], Fh(a, κ, k) � 1.
The analytical evaluation of the integral determining the momentum entropy Sp(a, κ, k) is
difficult due to the logarithms in its integrand, therefore we calculate them numerically. The
sum of position and momentum entropies Sx(a, κ, k) and Sp(a, κ, k) represents the entropic
uncertainty relation of the finite well.

We note that according to some authors, the measurement of the position of a particle in
a quantum system does not yield its exact value, but only the interval (Partovi’s ‘bin’ [13]) in
which it occurs. One can calculate the probability that the particle in the considered quantum
system occurs in one of these intervals, P1, P2, . . . , Pn, and use the Shannon formula for the
calculation of the measurement’s entropy for the discrete probability distribution

I = −
n∑
i=1

Pi logPi.

If one denotes the probabilities of finding the particle inside and outside the well by P1 P2 and
P3 one obtains the corresponding Shannon entropy

I0 = −
3∑
i=1

Pi logPi

where

P1 =
∫ −a

−∞
[ψI (x)]

2 dx = A2 exp(−2aκ)

2κ
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P2 =
∫ a

−a
[ψII(x)]2 dx = aB2 +

B2 sin(2ak)

2k

P3 =
∫ ∞

a

[ψIII(x)]2 dx = A2 exp(−2aκ)

2κ
.

The sum of the probabilities P1, P2, P3 is

3∑
1

Pi = aB2 +
B2 sin(2ka)

2k
+ exp(−2aκ) = N. (8)

Inserting equations (6b) into equation (8) and taking into account equation (6a), N becomes
1 as it should be. I0 is called the entropy of occurrence and it obtains its maximum value for
P1 = P2 = P3 = 1/3. In figure 1 (top) the entropy of occurrence I0 is plotted versus the depth
and width of the shallow well. The probability of finding the particle inside the well increases
as its depth increases. As U → 0, PII → 0, i.e. the probability of finding the particle inside
the well becomes zero and we have I0 = −2 log(1/2).

3. Results

We present the results of this study mainly in graphical form (h̄ = 1). In figure 1 (bottom) the
dispersion of the position,�x, for the shallow well is plotted against its depth and width. The
product of the momentum and the position dispersions (the standard uncertainty relation) and
the sum of the position and the momentum entropies (the entropic uncertainty relation) for the
shallow well as a function of its depth are depicted in figure 2 (top) and (bottom), respectively.

The shallow well, with only one bound state, can generally be characterized as a quantum
system with the large spread of its position probability density and relatively small spread of
its momentum probability density.

The dispersion of the position and the position entropy as well as the dispersion of
the momentum and the momentum entropy of the deep well, as a function of its quantum
number n, are depicted in figure 3 (top) and (bottom), respectively. The position entropy
for n = 1 and a = 1 has the value 0.43 which approaches the value of the position entropy
of the infinite well Sx = ln(4) − 1 [9]. The standard and entropic uncertainty relations
of a deep well as a function of n are depicted in figure 4. As we see in figure 1, the
probability of finding a particle in the central area of the well strongly depends on its width
and depth. The deeper and the narrower the potential well, the larger the particle localization
in its central area. Figure 1 (bottom) shows that the position dispersion also has a similar
behaviour. The dependence of momentum dispersion and entropy, which generally increase
with increasing the particle localization in the central area of the well exhibits just the opposite
behaviour.

The remarkable property of the product of the position and momentum dispersions (the
standard uncertainty relation) of a shallow well (a = 1) as a function of the well depth is that
it possesses a minimum in the vicinity of depth U = 4.5, where the product of the dispersions
of position and momentum gives the value of 0.506. This value is only slightly larger than the
minimal uncertainty product given by Heisenberg uncertainty relation. The sum of entropies
as a function of the depth of the shallow well also has its minimum in the vicinity of U = 4.5,
where it gives the value 2.153. This value approaches to the minimal lower bound for the
position–momentum entropic uncertainty relations, which is equal to 1 + lnπ [7].

The particle localization in the central area of a deep well is generally much larger than
it is in a shallow well. The highest localization exhibits the ground state, the position entropy
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Figure 1. Top: the entropy of the occurrence plotted against the width and depth of the shallow
well. Bottom: the dispersion of the position for the shallow well plotted against its depth and
width.

of which, gives the value 0.43 which is slightly higher than the state-independent position
entropy for the infinite well ln(4) − 1 = 0.3863 [9]. An interesting feature of the deep
finite-potential well is that its momentum dispersion and the entropy as a function of the
quantum state n exhibits different behaviour. While the momentum entropy increases only
slightly for n > 2, the momentum dispersion increases almost linearly, proportional to n. This
is why the momentum probability distribution of the deep well has two distant peaks in the
vicinity of which the momentum probability density is mainly concentrated. With increasing
n the distance between both peaks also increases. The areas of the concentrated momentum
probability are practically independent of n, therefore its entropy is almost independent of n
while the momentum dispersion, in which the distance between these areas explicitly occurs,
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Standard uncertainty relation

Entropic uncertainty relation
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Figure 2. Top: the standard uncertainty relation of the shallow well plotted against its depth.
Bottom: the entropic uncertainty relation for the shallow well plotted against its depth.

increases approximately linearly with n [6]. Due to this fact the standard and entropic
uncertainty relations of the deep well differ considerably for n > 2, which can be seen in
figure 4.

From what has been said so far the following points can be observed.

(a) The dependence of the Heisenberg uncertainty relation on the depth and the width of a
shallow potential well is essentially similar to that of the entropic uncertainty relation. This
means that for the quantum states of shallow wells both relations express the uncertainty
principle equally well.

(b) For A = 1 and U ≈ 4 both the entropic and the Heisenberg uncertainty relations have
a minimum. In the vicinity of this depth the wavefunction of the wells are most similar
to flat Gaussian functions. Therefore, here the position–momentum uncertainty product
gives a value close to 0.5.

(c) There is a considerable difference between the dependences of the entropic and the
Heisenberg uncertainty relations on quantum states for the deep potential well. Here the
entropic uncertainty relation more adequately expresses the uncertainty principle than
the Heisenberg one.

(d) The difference between both cases consists of the fact that the position and the momentum
eigenfunctions of a shallow well are smooth and do not have sharp peaks, whereas the
momentum eigenfunctions for the deep well exhibit two sharp distant peaks, causing a
great difference between the momentum dispersion and the entropy.

Several authors have already pointed out the fact that standard deviation is not a good
measure of uncertainty for probability distributions with several distant peaks, so that the
Heisenberg inequality is not a proper uncertainty relation when position and/or momentum
distributions are of this kind. See, e.g. [3, 4, 18]. However, these authors have also noted that
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Figure 3. Top: the dispersion of position and position entropy for quantum states of the deep well.
Bottom: the dispersion of momentum and momentum entropy for quantum states of the deep well.

Standard deviation can also fail to be a good measure of uncertainty for smooth one-hump
curves. A well known instance is the Cauchy distribution,

pc(x) = γ

π

1

(x − a)2 + γ 2
γ > 0

for which �x = ∞ for any value of the parameter γ , although the probability distribution
becomes increasingly narrow as γ decreases and tends to a Dirac delta distribution in the limit
γ → 0. On the other hand, the corresponding entropy Sx = log(4πγ ), has a perfectly correct
behaviour.
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Figure 4. Top: the entropy of occurrence for quantum states of the deep well. Bottom: the
standard and entropic uncertainty relations for quantum states of the deep well.

One can also find a class of probability distributions which exhibit similar properties. Let
be a probability distribution with parameter a be written in the form

F(x, a)

x2
.

If for F(x, a) holds∫ ∞

−∞
F(x, a) dx → ∞

while ∫ ∞

−∞

F(x, a)

x2
= 1
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then �x → ∞ for any value of parameter a. An instance of such a distribution (assign
φ(x) = sin(ax)/

√
πax to the wavefunction) is

p(x) = sin(ax)2.

Here, the integral
∫ ∞
−∞ F(x, a) dx tends to ∞, while∫ ∞

−∞
sin(ax)2 dx = 1.

In this case, �x → ∞ is independent of the parameter a. On the other hand,

Sx =
∫ ∞

−∞
(sin(ax)2) log(sin(ax)2) = log(π/a) + I/π

where [19]

I = −
∫ ∞

−∞

(
(sin y2)

y2

)
log

(
(sin y)2

y2

)
dy = 2π(1 − γ ) ≈ 2.656

where γ is the Euler constant. Here, again Sx is finite and depends on a.
Another nice instance of a probability distribution with �x → ∞ is represented by the

following function

p(x) = (arctan ax)2

π log(4)x2

for which ∫ ∞

−∞

(arctan ax)2

π log(4)
dx → ∞

while ∫ ∞

−∞

(arctan ax)2

π log(4)x2
dx = 1.

This probability distribution is represented by a smooth one-hump curve, which is symmetric
about the y axis and for a → ∞ it takes the form of a Dirac delta function.

In conclusion,we can state that standard deviation fails to be a good measure of uncertainty,
and so the Heisenberg inequality �x�p is not a proper uncertainty relation in quantum
physics, neither for the probability distribution which possesses several distant peaks (as was
demonstrated by the finite-potential well) nor if it belongs to the class of functions described
above.
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